
NASA-CR-193720

MCAT Institute

Progress Repod

93-13

(NASA-CR-193720) IMPLEMENTATION
ADI: SCHEMES ON MIMD PARALLEL

COMPUTERS (MCAT Inst.) 23 p

OF

G3/62

N94-13204

Unclas

0181275

Implementation of ADI-schemes

on MIMD parallel computers

Rob F. Van der Wijngaart

July 1993 NCC2-752

MCAT Institute

3933 Blue Gum Drive

San Jose, CA 95127
AUG_0 _ "

¢
'j

, )



Implementation of ADI-schemes

on MIMD Parallel Computers

Rob F. Van der Wijngmurt

1 Introduction

In order to simulate the effects of the impingement of hot exhaust jets of High

Performance Aircraft on landing surfaces a multi-disciplinary computation

coupling flow dynamics to heat conduction in the runway needs to be carried

out. Such simulations, which are essentially unsteady, require very large

computational power in order to be completed within a reasonable time frame

of the order of an hour. Such power can be furnished by the latest generation

of massively parallel computers. These remove the bottleneck of ever more

congested data paths to one or a few highly specialized central processing

units (CPU's) by having many off-the-shelf CPU's work independently on

their own data, and exchange information only when needed.

During the past year the first phase of this project was completed, in

which the optimal strategy for mapping an ADI-algorithm for the three-

dimensional unsteady heat equation to a MIMD parallel computer was iden-

tified. This was done by implementing and comparing three different domain

decomposition techniques that define the tasks for the CPU's in the parallel

machine. These implementations were done for a Cartesian grid and Dirich-

let boundary conditions. The most promising technique was then used to

implement the heat equation solver on a general curvilinear grid with a suite

of nontrivial boundary conditions.

Finally, this technique was also used to implement the Scalar Penta-

diagonal (SP) benchmark, which was taken from the NAS Parallel Bench-

marks report [1].

All implementations were done in the programming language C on the

Intel iPSC/860 computer.



2 Domain decompositions

The first domain decomposition examined was the static block-Cartesian

[2], [3]. Every CPU receives one contiguous block of the global grid and is

responsible for computation of the solution on it. This decomposition was

found to be inefficient because of the large number of interactions needed

between the different grid blocks. These interactions, which take the shape

of packets of data (messages) sent between CPU's, suffer from long start-up

times (latency).

The second domain decomposition considered was the dynamic block-

Cartesian [2]. Here every CPU again receives one contiguous grid block,

but the orientation of the grid block changes in order to accommodate the

different implicit solution directions used by ADI. This method was found

to be significantly more efficient than the static block-Cartesian, but it does

not scale well to large numbers of processors. It also requires transmission

of very large messages between all the CPU's in the parallel machine, which

will lead to congestion (edge contention) on the newest parallel architectures.

The last domain decomposition examined was a multi-partition method

that was adapted to the so-called hypercube topology of the iPSC/860 by

Bruno and Cappello [5]. Now every CPU receives a small number of con-

tiguous grid blocks (cells, or partitions) that are allocated within the overall

grid in such a way that during any of the phases of the ADI algorithm there

is work to do for each CPU. This method was found to be optimal in terms

of computational speed, because of a very equally distributed work load, a

small number of messages sent between CPU's, and the possibility to mask

communications by performing computations concurrently.

3 Curvilinear algorithm

The Bruno-Cappello method was subsequently implemented for the heat

equation in generalized curvilinear coordinates. Implementation of more

complicated boundary conditions, such as C-grid conditions, proved to be

efficient and relatively easy because of the high-level data structures used.

Consequently, the complaints voiced by other authors [6], [4] that the Bruno-

Cappello method is too complex and too inefficient for practical applications

could be construed as defects of Fortran, which does not support high-level

2



data structures. It wasfound that the Bruno-Cappellomethod wasvery well
suited for the more involved curvilinear problem with non-trivial boundary
conditions, sincemore communicationscould be overlappedwith computa-
tions Moreover,the boundary condition implementation, which is an impor-
tant sourceof load imbalancefor other methods, could be balancedwell in
this case.

The resultsof the above investigationswill be presentedat the Super-
computing '93 conferenceto be held in Portland, Oregon,November15-19,
1993. A draft of the paper to be included in the proceedingsis attached in
the appendix.

4 Scalar Penta-diagonal Benchmark SP

SP is a model problem that has most of the essential features of the diagonal-

ized Beam-Warming flow solver OVERFLOW, and can be used as a stepping

stone for constructing the full-fledged flow solver. It was also implemented

using the Bruno-Cappello method, but no timings have been obtained yet.

References

[I]

[2]

[3]

[4]

D. Bailey, J. Barton, T. Lasinski, H. Simon, The NAS parallel bench-

marks, NASA Ames Report RNR-91-002 Revision 2, 1991

R.F. Van der Wijngaart, Efficient implementation of a 3-dimensional

AD[ method on the iPSC/860, to be presented at Supercomputing '93,

Portland, Oregon, November 15-19, 1993

J.S. Ryan, S.K. Weeratunga, Parallel computation of 3-D Navier-Stokes

flowfields for supersonic vehicles, AIAA Paper 93-0064, 31 °' Aerospace

Sciences Meeting & Exhibit, Reno, NV, January 11-14, 1993

P.J. Kominsky, Performance analysis of an implementation of the Beam

and Warming implicit factored scheme on the NCube hypercube, Pro-

ceedings of the Third Symposium on the Frontiers of Massively Parallel

Computation, College Park, MD, October 8-10, 1990, IEEE Computer

Society Press, Los Alamitos, CA



[5] J. Bruno, P.R. Cappello, Implementing the Beam and Warming method

on the hypercube, Proceedings of 3 "a Conference on Hypercube Concur-

rent Computers and Applications, Pasadena, CA, Jan. 19-20, 1988

[6] N.H. Naik, V.K. Naik, M. Nicoules, ParalIelization of a class of implicit

finite difference schemes in computational fluid dynamics, International

Journal of High Speed Computing, Vol. 5, No. 1, pp. 1-50, 1993

4



APPENDIX A



Efficient implementation of a 3-dimensional ADI method on the

iPSC/860

Rob F. Van der Wijngaart

MCAT Institute, NASA Ames Research Center

Moffett Field, CA 94035

Abstract

A comparison is made between several domain decomposition strategies for the

solution of three-dimensional partial differential equations on a MIMD distributed

memory parallel computer. The grids used are structured, and the numerical algo-

rithm is ADI. Important implementation issues regarding load balancing, storage
requirements, network latency, and overlap of computations and communications

are discussed. Results of the solution of the three-dimensional heat equation on the

Intel iPSC/860 are presented for the three most viable methods. It is found that

the Bruno-CappeUo decomposition delivers optimal computational speed through

an almost complete elimination of processor idle time, while providing good memory
efficiency.

1 Introduction

Implicit numerical algorithms for the solution of multi-dlmensional partial differential

equations (PDE's) are usually more efficient computationally than explicit methods, when

implemented on conventional (vector) computers. However, they are harder to program

efficiently on parallel computers due to a more global data dependence than is exhibited

by explicit methods. Numerical solution of PDE's typically involves more or less the

same operations for all the points in a computational grid used to discretize the prob-

lem space. Consequently, domain decomposition is the natural way of creating separate

tasks for a parallel computer: a roughly equal number of grid point is assigned to each

processor. Depending on the type of implicit algorithm chosen, some domain decompo-

sitions perform better than others. Efficiency is also affected by hardware parameters

(e.g. network latency and bandwidth, and processor memory) and operating model (e.g.

MIMD, SIMD). In this paper we compare three viable domain decompositions for the

solution of three-dimensional PDE's using ADI (Alternating Direction Implicit) on the

Intel iPSC/860 MIMD parallel computer. The results of this study also apply to other



line-based solution strategies, such as line-relaxation, when multiple sweep directions are

used during each iteration.

As an example, we solve the time-dependent three-dimensional heat equation. Since

the aim is to assess parallel efficiency, the problem is kept as simple as possible (i.e. Carte-

sian grid, constant mesh spacing, Dirichlet boundary conditions, constant material prop-

erties, no source term). As a result, the computational program is simple and easy to

analyze, and the computations per grid point are at a bare minimum. No effort was made

to use the simplifying assumptions to reduce communication, so a relatively bad balance

results between computation and communication time; a worst-case parallel performance

analysis is obtained.

2 Problem formulation

The equation to be solved is:

pcTt = V-(kVT), (1)

where T is temperature, t time, p density, c specific heat, and k the conduction tensor.

Assuming k to be a constant scalar, i.e. k = kI, we get

02 02 02
pcT,= k(_ + 3-fr+ _)T. (2)

Equation (2) is subsequently discretized using central differencing in space and the 0-
method in time:

(1- -_-ck[(6;)2+ (6;)2+ (6;)2])AT= hk[(,Sc]2pc_,-=, + (_;): + (_;):]T (3)

Here _ signifies the central difference operator in the xi-direction, T is the temper-

ature, AT its temporal increment, and h is the size of the time step. The parameter

0 controls the 'implicitness' of the problem (19 = 0 yields Euler explicit, 0 = 1 gives

Euler implicit, and 0 = 1/2 defines the second-order-accurate Crank-Nicolson scheme).

Equation (3), which is said to be in delta form, defines a matrix equation with a very

large bandwidth due to the three-dimensionality of the discrete operator. Approximate

factorization reduces this operator to a product of three one-dimensional operators with

a bandwidth of only three each (e.g. [1]). So equation (3) is approximated by:

_ hOk ¢: _ck(cb;)2)AT = hkr(,_c_: (6;):(1 - -_-ck(_5;)2)(1 --ff_--(gu) )(1 - "_'t,-=, + + (_5:):]T (4)

An outline of the numerical algorithm is:

1. Compute rhs, the right hand side of equation (4).

2. Solve the system (1 - -_-ck(g_):)A = rhs along lines in the x-direction.

2



hOk (6c_2_B3. Solve the system (1 - --fi6-- y: : = A along lines in the y-direction.

4. Solve the system (1 - -_ck (_5_)2)AT = B along lines in the z-direction.

5. Update T for all interior grid points.

3 Domain decomposition

The Intel iPSC/860 computer on which the problem is solved is of the MIMD (Multiple

Instruction Multiple Data) distributed memory type. Data is owned by the individual

processors in the processor array, which is structured as a hypercube. The only way

that data can be shared among processors is by message passing. Sending or receiving a

message takes communication time, which goes at the expense of the computing efficiency.

Moreover, synchronization and load balancing are an issue; processors should not be

allowed to idle because they are out of work or are waiting for data to be prepared by

other processors. The following sections discuss three different domain decomposition

strategies and the associated numerical implementations. Although many more such

strategies are conceivable, these appear the most viable, for they all have a good load

balance and attempt to minimize data communication in some sense.

3.1 Static block-Cartesian decomposition

In the static block-Cartesian case, each processor owns one contiguous Cartesian-product

subspace--a block---of the whole grid for the duration of the entire computation. This de-

composition assumes a very small latency, relatively low communication bandwidth, and

limited storage. The grid blocks are as close to cubical as possible in order to minimize

surface area, which in turn minimizes the amount of data to be communicated between

blocks. It also minimizes storage of an extra layer of points around the grid block, a com-

mon and convenient vehicle in domain decomposition strategies for sharing information

with neighboring processors.

A serious drawback is, however, that no single block-Cartesian decomposition is effi-

cient for all line solves in steps 2 through 4. Consider step 2, for example. Here a matrix

equation is formed for each line in the x-dlrection across the whole grid. If this line is

contained completely in a single processor (which means that the block is of the width

of the grid in the z-direction), then all processors can solve their matrix equations inde-

pendently, and complete parallelism is obtained. However, since the grid is divided into

multiple blocks, there must be at least one coordinate direction, say y, that runs across

several blocks. That means that in step 3 no whole y-line can be formed within one pro-

cessor, and a processor must wait to receive information from neighboring blocks before

it can do its part of the forward elimination or the back-substitution; communication is

needed during line solves.

3



When using the Thomas algorithm for solving the tri-diagonal matrix equations, the
information to be passedto the next processorduring the forward elimination consistsof
the updated right hand side and the upper and diagonalmatrix elementsat the end of
eachline (the matrix elementsare not strictly neededin the current constant-coefficient
case,but wepassthem for generality's saketo reflect the communicationrequirementsof
curvilinear (section6) and fully nonlinearalgorithms). If the latency is very large,onecan
collectall suchtriplets of valuesfor all the line segmentsin the current grid block and send
them to the next processorasonemessage.On arrival, they canbeunpackedand usedby
the next processorto advancefurther along the line in the forward elimination step. But
this leads to a severeload imbalance,since only one layer of grid blocks perpendicular
to the line solve direction is active at any given time. Instead, we send each triplet
individually, giving the next processorsomethingto chewonalreadybeforestarting on the
next line segmentof the forward elimination within the current processor.This process,
called Pipe-lined GaussianElimination (PGE) [2], [3], hasa much better load balance,
providedeachgrid block containsmanymore line segmentsthan thereareconsecutivegrid
blocksin anycoordinatedirection. However,it doesrequiresendingmanysmall messages.
An alternative to PGE that avoidsthe latter problem is offeredby variants of the cyclic
reduction algorithm [3], called substructuring methods. These rely on eliminating as
many off-diagonal matrix elementsas possiblewithin eachgrid block in parallel before
communicatingwith processorscontaining neighboringblocks. Substructuring methods
arevery similar in appearanceto solutionmethodsfor periodic problems,and they require
a comparablenumber of arithmetic operations, which is almost twice as many as are
neededby PGE. Due to this addedcomputational expense,substructuring methods are
not consideredin this study.

3.2 Dynamic block-Cartesian decomposition

In the dynamic block-Cartesian case, each processor again owns a contiguous grid block,

but this time the decomposition changes between the different line solve stages. This

decomposition assumes a large latency, relatively high communication bandwidth, and

abundant storage. The dynamic redecomposition (also called Mass Reorganization [4] or

Complete Exchange [7]) enables the data lay-out to be tailored to the line solve step it

supports. Before solution in the xi-direction (i= 1, 2, 3), the Cartesian blocks are made

to be of the width of the grid in that same direction. The extra expense incurred is the

communication needed to redecompose the domain, but no data needs to be transferred

during any of the three solution stages.

The optimal dynamic subdivision is found as follows. The whole grid contains n, ×

n_ × nz points. Let np_ signify the number of processors (blocks) in the x j-direction

during the xi-line solves, the total number of blocks being np. Some useful identities are:

3

rip: I = 1, IXnp:_ =np, (i= 1,2,3). (5)
j=l



Between the z- and y-line solves the intermediate solution A on a processor has to be

communicated to all other processors that need it. The only information that does not

need to be communicated lies in the intersection of the Cartesian blocks of the successive

decompositions that reside on the same processor during both line solve stages. The size

of the intersection region on a single processor is at most:

rig; ny n_ _ rt_n_nz

max(np_,np_) " max(np_,np_) max(np_,np_z) np_np_max(np_,np_) " (6)

The total number of grid points in a block is _ which makes the total amount of
np ,

grid point data communicated equal to:

(1 1 )n_nunz _ _ max(n_, np_) " (7)npxnpu

Similar expressions can be derived for communications between y- and z-line solves, and

before the final temperature update (step 5). Assuming all inter-processor data transfer

can happen without conflicts, the total communication time tc is:

(3 1 1tc = n_nynz Y _ max(np_,np_) _np_npy np_np_ max(np_, np_ )

1 )np_np: max(np_,np_) c, (S)

with c the time to send one floating point number. Using the identities (5), tc can be

simplified to:

nan nz 1 1 1 )to= _(3 max(np_,np_) max(np_,np_) max(np_,np_), c. (9)

It is not easy to see how this expression can be minimized for a certain choice of the np_.
Therefore, two extreme cases are considered.

First, map the planes perpendicular to each line solve direction to a square processor

array, i.e. np:_ '+_*d3 = np_l '+2_'*°d3= v/-n-_, (i = 1,2,3). This leads to a small aspect ratio

of the blocks in the plane perpendicular to the lines solve direction. The corresponding

communication time t_q is:

= np c. (10)

Second, map the planes perpendicular to each line solve direction to a linear processor

___(_+_,_od3 _('+_)mod3 (i 1, 2, 3). This leads to a large aspectarray, i.e. npx_ =np or np_ = np, =

ratio of the blocks in the plane perpendicular to the line solve direction; the domain

is dissected into slices stretching across the entire width of the grid in two coordinate

directions. Equation (9) shows that the corresponding communication time tt_/'_ is, in

general:

ttin= n_nyn_(3-n-_p)c. (11)c np



An additional gain is obtained by selecting one particular coordinate direction zjo and

*_ = 1, (i = 1, 2, 3). Then one of the terms on the right hand side of equationrequiring np,,o

(9) is 1, and the communication time drops to:

tu" = n_n_n_ (2- +)c (12)c np

Now there is one pair of solution steps between which no communication is necessary at

all. For example, suppose that 3"0= 2, then the grid dissection chosen for either the z-line

solves or the z-line solves will also be adequate for the y-line solves. Coordinate direction

xjo is called the pile-direction of the decomposition (see below). A comparison of the

communication times for the square and the linear decompositions yields:

t'j"/t7 = + # 1). (13)

For np > 4 the linear decomposition is superior, with gains increasing as np grows.

3.3 Bruno-Cappello multi-cell decomposition

In the Bruno-Cappello case ([4], [5]), each processor owns a collection of grid blocks, called

cells. This decomposition supports a large latency and a relatively low bandwidth, and

requires somewhat more memory than the static but a lot less than the dynamic block-

Cartesian decomposition. The arrangements of the equally-sized cells is such, that every

coordinate plane that cuts the grid intersects with exactly one cell of each processor. The

number of cells is the smallest possible to satisfy the above requirement. If the number

of processors is again np, then each processor owns _ cells. Consequently, the total

number of cells is npv/-_, which are laid out in a v_ x v/h-_ x _ three-dimensional

array. No two cells belonging to the same processor abut, so that no complete lines in

any coordinate direction can be formed within one processor; communication is again

necessary during line solves, but now we do not have to worry about load balancing the

algorithm. Therefore, each cell can finish all its line segments during forward elimination

before sending a packet of consolidated data to the adjacent cell for processing.

3.4 Right hand side evaluation

So far the cost of assembling the right hand side of equation (4) has been ignored. Whereas

the computing cost of that assembly depends only weakly on the decomposition chosen,

the communication cost is proportional to the surface area of each block. The surface

area is smallest for the static and largest for the dynamic block-Cartesian decomposition.

In the latter case the surface area does not scale with the number of processors; the

communication overhead of evaluating the right hand side appears to grow indefinitely.

But in all three cases the right hand side can be computed for points interior to the

blocks or cells owned by each processor while boundary information is being sent to other



processors. Experiments with the AIMS performancemonitoring system [6] show that
this communication doesnot lead to processoridle time for any grids of reasonablesize.

4 Implementation issues

All cases are programmed in C. This language provides the flexibility and convenience

of mixed-type data structures that keep parameter lists short and clean. It also has

the advantage that functions are built in for computing the length of system- or user-

defined data types (important for sending messages), that dynamic memory allocation

is supported, and that interfaces with Fortran subroutines are possible. Tests on the

iPSC/860 show that Fortran77 and C have the same computational efficiency. What

seems to be a drawback of C is that it does not allow multi-dimensional arrays of variable

size in parameter lists, which forces the programmer to map them into one-dimensional

arrays with explicit computation of indices. But this can be done easily and efficiently,

with no performance degradation. In fact, having explicit control over array lay-out

obviates the need for the auxiliary arrays reported in [4].

4.1 Static block-Cartesian

In the static block-Cartesian approach each grid block has dimensions augmented by
one in all directions to account for block interface information. The blocks themselves

are arranged in a three-dimensional array such that communication between neighboring

blocks is also between neighboring processors (Hamming distance of 1). This can be

achieved using binary reflected gray codes (see e.g. [10]). The processor number p of a

block with indices (i,j, k) in the three-dimensional array of size (Is_z,, J,_z_, Ko_z,) is given

by p = gray(i) + Isiz_ * (gray(j) + J,i_, * gray(k)). Experiments using gray codes show a

performance improvement of about 5% over the canonical numbering p = i + I, iz, * (j +

J, iz, * k) for medium-sized grids (60 x 60 x 30 to 80 x 80 x 40 grid points) on a 32-processor

hypercube.

As was mentioned earlier, the computation of the right hand side vector for points

interior to the grid block can concur with the exchange of boundary face information

between neighboring grid blocks. This requires the use of asynchronous message passing.

Extra speed-up is obtained by using so-called forced messages, which bypass system wait

buffers and get copied immediately into the application space of the receiving processor.

Once the boundary data has been received, the right hand side for points on the edge of

the grid block can be evaluated. This strategy offers a significant increase in efficiency,

although there is a hidden cost; since the computation of the right hand side is split

in two (interior and boundary points), the vector length for each of these steps--most

notably for the boundary points--is reduced, which leads to a loss of performance on the

iPSC/860 vector processors.



The left hand side matrices for the simple Cartesian-grid caseare constant, so they
neednot be constructed explicitly. Consequently,there is no computational work that

can be done when transferring information between neighboring cells during the line-solve

phases of the algorithm, and simple synchronous message passing is used.

4.2 Dynamic block-Cartesian

In the linear dynamic block-Cartesian approach each processor owns a slice of the whole

grid, whose orientation depends on the phase of the solution process. Each processor

contains a number of slice variables---one for each physical variable defined on its part

of the grid--that hold the data in an array of function values. That array is distributed

over a number of pile data structures, each of which contains a block of data that can

be transferred monolithically to other processors during the change of decomposition

direction (Figures 1 and 2). A pile stretches across the grid in the x/0-direction (see

section 3.2). No rearrangement of the values within a pile is necessary after transfer.

During the redecomposition phase, each processor needs to send a (different) pile of

data to every other processor in the allocated hypercube. These cannot all be nearest

neighbors, so there is a danger of edge contention [7]; two messages cannot normally share

the same data path--edge--between two processors in the hypercube, so if communication

requires the paths of several messages to overlap (partially), then they will have to wait

for each other until the contended edge is freed.

In Figure 2 the data transfer needed for changing the decomposition direction between

the x-line solves and the y-line solves is depicted, assuming the pile is aligned with the

z-axis. The hatched piles sitting on processor 1 during the x-line solves have to be

distributed among processors 0, 2, 3, 4, 5 for use during the y-line solves. Note that pile

1 (open box) need not be communicated, since it stays on processor 1. This is generally

true for pile i on processor i. Conversely, processor 1 also receives piles (shaded) from

processors 0, 2, 3, 4, 5 for use during the y-line solves. It obviously does not receive
information from itself.

It is found in [7] and [8] that this type of communication, called complete exchange,

suffers from significant edge contention if programmed in a naive way, i.e.:

for pile = 0, np-1 do: if pile # mynumber then send-pile-to-processor(pile)

Communication conflicts are avoided by using Bokhari's linear algorithm [7]:

for pile = 1, np-1 do: send-pile-to-processor((pile+mynumber) mod np)

This is the strategy employed in this study. It is on a par with the stable method and

the pairwise-synchronized method with forced messages also described in [7], while outper-

forming all other algorithms for the global exchange of medium to large-size messages on

medium-size hypercubes. Again, asynchronous communication and forced message types

are used, which has the advantage that no delay is caused by placing sizeable messages

8



associatedwith eachpile on the network.

In order to compute the right hand side vector, each processor needs to have access

to temperature values on adjacent slices; these are stored in buffer zones. Buffer zones

are not included in the slices themselves--as was the case with the static block-Cartesian

decomposition--since this would necessitate a certain repacking of pile data during the

complete exchange. Instead, interface data is stored in two buffer arrays on each node,

one for either side of a slice. The thickness of each buffer is one, because a seven-point-

star stencil is used for computing the right hand side. Buffers are shipped to neighboring

processors as single messages. In order to keep these communications as efficient as

possible, they are overlapped with the computation of the right hand side vector for

points interior to the slices. In addition, the slices are numbered using gray codes such

that neighboring slices are on neighboring processors, i.e. p = gray(slice).

4.3 Bruno-Cappello multi-cell

In the Bruno-Cappello approach each ceil has dimensions augmented by one in all direc-

tions to account for cell interface information. Many lay-outs are conceivable that satisfy

the requirement that each coordinate plane cutting across the whole grid intersect with

exactly one cell of each processor. In addition, we demand that for a given communi-

cation direction all cells belonging to a certain processor send information to only one

other processor. For example, suppose a cell on processor 0 has neighbors on processors

as indicated in Figure 3, then all the other cells owned by processor 0 exhibit the same

configuration.

Such a lay-out of cells can be constructed as follows; starting with a certain assignment

of cells in the 'ground' plane (k = 0), every subsequent plane has the same relative

assignment of cells to processors--save boundary effects--and is shifted in both the i- and

j-directions. In order to preserve the neighbor relation in the z-direction, the (periodic)

shift for plane k should be of the form (a • k, b. k). Bruno and Cappello show [5] that it is

not possible to construct a hypercube mapping of cells to processors that results in nearest-

neighbor communication only, but that it is possible to have a maximum communication

distance of 2 in one coordinate direction while preserving nearest-neighbor relations in

the other two directions. This mapping is constructed easily using gray-code mappings

for the assignment of cells to processors in the ground plane, and by applying either the

(k,-k) or the (-k,k) shift to subsequent z-planes. In the latter case, cell (i,j,k) lies on

node numberp = gray ((i + k)mod v_-_) +v/_.gray ((j - k)mod vZh-_). This mapping

requires only one message per processor in each of the six coordinate directions (east, west,

north, south, top, bottom) when exchanging boundary information with neighboring cells,

regardless how many cells there are per node. Again, we can overlap this copying action

with computation of the new right hand side vector for interior points of all cells.

An additional advantage of the Bruno-Cappello decomposition is that all processors

have exactly one cell face on each of the six faces of the global grid. That means that



boundary effectsare the samefor all processors,yielding a perfect load balanceautomat-
ically. In the static and dynamic block-Cartesiancases,processorsowning interior grid
blockshavea different work load than those that facea grid boundary.

It should benoted that the Bruno-Cappellomethod describedhereis a specialcaseof
the moregeneralclassof multi-partition methodsdescribedin detail in [9]; it is tailored
towardsa scalableimplementation on a binary hypercubetopology.

4.4 Resources summary

In Table 1 we summarize the number of messages and the amount of communication (8-

byte words) needed during one time step of each of the three implementations, as well as

the amount of storage (8-byte words) per grid variable. All numbers are for one processor.

The grid contains n × n × n points, and the total number of processors is np.

It should be stressed that one third of the communication cost in the dynamic and

Bruno-Cappello decompositions is hidden by computations, whereas the static decom-

position offers hardly any savings in this regard. That is because most messages in the

latter case are sent during the line solve stage, when no overlap of computation and com-

munication is possible. The amount of storage required is just for one variable. What

makes the dynamic algorithm memory-inef_cient is the fact that certain variables have to

be stored multiple times because of the different decompositions. This is especially true

when generalized coordinates or nonuniform material properties are used, in which case

multiple versions of properties and metrics data need to be stored.

5 Comparison

Three sets of computations were done in order to assess the impact of the different domain

decompositions on the parallel performance ¢, the results of which are presented in Tables

2-4. ¢, also called the e.O_ciency, relates the time to execute a certain problem on np

processors (time(np)) to the time it takes to solve the same problem on just 1 processor,
i.e.

time(l)
¢(np) - np time(np) " (14)

It should be noted that time(l) is the true serial execution time on one processor, stripped

of all the parallel overhead.

For each case are also listed the computing speed Mflops (millions of double precision

floating point operations per second). Mflops were computed by multiplying the total

number of grid points by the number of floating point operations per point (41 in this

case), and dividing the result by the total elapsed time during one time step. The elapsed

time is wall-clock time averaged over 50 time steps. Only the smallest grid will fit on a

single processor, so speed-ups for larger grids are computed by comparing with the Mflops

for that smallest grid.

10



The numericalproblem solvedis the samefor eachcase;the time integration is fully

implicit (0 = 1), and the initial values are T(x,y,z,O) = sin(Trx) sin(_'y) sin(Trz) on the

unit cube. If the boundary values are kept at zero (Dirichlet boundary conditions), the

analytical solution is easily found through separation of variables, i.e. T(x,y,z, t) =

exp(-_r2t)T(x, y, z, O).

From the three sets of computations (Tables 2-4) it is concluded that the parallel

performance of the algorithms generally improves--as expected--when the total grid size

increases. It is also clear that the dynamic block-Cartesian decomposition is almost twice

as efficient as the static one. The Bruno-Cappello multi-cell decomposition, in turn, is

significantly faster than the dynamic block-Cartesian approach, even when only half the

number of available nodes is utilized (Bruno-Cappello requires the number of nodes to be

a square). Moreover, the grids chosen favor the dynamic block-Cartesian decomposition,

which is most efficient for grids that have some small aspect ratio, whereas Bruno-Cappello

performs best on a cubic grid. We therefore conclude that the last method is best suited

for ADI-type applications.

6 Curvilinear algorithm

Now that the optimal algorithm has been selected for the high-communication ADI-

algorithm on a simple rectangular grid, we also apply the Bruno-Cappello decomposition

to the solution of the heat equation on a curvilinear grid. It is a straightforward ex-

ercise to rewrite equation (2) using the general coordinate transformation (x,y,z) =

(x((, r/, ¢'), y((, 77,(), z(_, r/, ()). The resulting equation is subsequently discretized again,

using central differences for all derivatives. In order to enable approximate factorization,

mixed second derivatives are all moved to the right hand side, leading to the following

(factored) difference scheme:

(1 - -_[6_J-lg_6_])(1 - hp0---_-k[6,J-'gnn6,])(1 - -h_[6_J-ag¢¢_])AT =

h_b.k(6_j-lg_6_T + 6,j-lgnn6nT + 6¢j-lg_¢6_T+pc

6_(J-_[ge'76,TT + g¢¢6_T]) + 6,7(J-a[g'_6_T + gn¢5¢T]) + 6_(J-a[g¢¢,f_T + g_'6nT])) , (15)

where g is the metric tensor and J the determinant of the Jacobian of the transformation.

This scheme involves 150 floating point operations per grid point per iteration, pro-

vided g and J are stored for every grid point. The algorithm for doing one time step has

to be modified slightly to account for the fact that the difference stencil is no longer a

seven-point star on a non-orthogonal grid, but a 3 × 3 × 3-cube with the eight corners

excluded. Thus, in order to evaluate a new right hand side, points on the corner of a

cell need information from six other processors, instead of just three in the Cartesian-grid

case. In order to exchange all necessary boundary data a communication scheme similar

to the one outlined in [11] is used, whereby the face data transfer is broken up into three

11



pairs (east-west,north-south, top-bottom). After the third transfer, all boundary data
of the augmentedcellshasbeenupdated. While eachpair is being sent, onethird of the
right hand sidefor interior points is computed. This strategy is not asefficientasthe one
in the Cartesiangrid case,where all facedata wassentat the sametime and the whole
right hand sidefor interior points wascomputed in oneloop, but it still takesadvantage
of the overlapof communicationand computation.

The left hand sidematrices for the different approximate factorsare recomputedeach
time step in order to savememory. Here the Bruno-Cappello decompositionoffers yet
another advantage;during the forward elimination phasesthe communicationof end-of-
line data to thenext cell canbeoverlappedwith the computationof the next left handside
matrix. This cannotbedonein the static block-Cartesianapproach,becausethe messages
to be sent are many and small. So in the Bruno-Cappello casethe only communication
that is not overlappedwith computation is that of the solution as it is passedon during
the back-substitution phases.This involvesonly onedata item perpoint of eachcell face,
asopposedto three during the forward elimination phases.

An additional computational gain is obtained by writing the line solveroutines such
that the inner loopsalwaysrun over the first array index of the (intermediate) solution;
sinceall partial line solveswithin a cell arecompletely independent,it doesnot matter if
we first finish oneline segmentand then proceedto the next, or if wedo onecomputation
at a time for each line segmentwithin a cell in the direction of increasingfirst index
while keepingthe others fixed. This again is not possibleusingthe static block-Cartesian
approach,becauseGaussian-eliminationpipe-lineshaveto be filled one line segmentat a
time.

The resultsof computations done with the thus generalizedschemeare presentedin
Table5. The programwasmodifiedsuchthat someprocessorswereallowedto idle within
a hypercube, so that the program could be run on any squarenumber of processors
smaller than 128. Speed-upfigures refer to the actual number of active processors. If
the number of processorsis not a power of 2, no useful cell-to-processormapping can
be constructed using gray codes. Consequently,someperformancedegradationoccurs,
although this effectis minimized through the overlapof communicationand computation.
The casesrun are selectedsuch that they constitute the biggest grid possibleon some
number of processors(e.g. a 56x56x56 grid on 4 processors).Interestingly, the increase
of the problemsizeon a fixed numberof processorsdoesnot alwaysyield a monotonically
increasingperformance.This may be due to a degenerationof the cacheutilization and
the increaseof memorystrides asthe problem sizegrows.

Table 5 showsthat the parallel performanceof the Bruno-Cappello decomposition
degradesrelatively slowly for increasingnumbersof processors,and that anefficiencyof
about 75%is feasibleon any number of processors,provided the grid is large enough.A
maximum performanceof 526 Mflops is attained for a 1703grid on 121processors,at an
efficiencyof 74%.

12



7' Discussion, summary, and conclusions

Three methods have been investigated for solving ADI-type problems on a MIMD dis-

tributed memory parallel computer. The most efficient uses the Bruno-Cappello multi-

cell decomposition, which automatically ensures a near-perfect load balance and is easily

amenable to overlap of computations and communications --the most important source

of reduction of parallel overhead. It also sends the smallest number of messages per

iteration, which minimizes communication cost due to high latency, and allows high com-

putational efficiency on individual processors. Solution of the three-dimensional unsteady

heat equation in curvilineax coordinates shows good scalability, and performance figures

of up to 526 Mflops (double precision) on 121 processors of the Intel iPSC/860 for a large

enough grid, even though only 150 floating point operations per grid point are carried

out per iteration. The current implementation in C has been extended to include more

complex boundary conditions (e.g. adiabatic wall, prescribed time-varying wall tempera-

ture or heat flux, wrap-around C-grid, etc.), and it was found that the use of high-level

data structures kept the programming complexity as low as that of the static or dynamic

block-Cartesian decompositions.

The multi-cell method is expected to offer an even larger relative benefit on the new

generation of ring-, mesh- and torus-connected MIMD computers, since their connectivity

is less than that of a hypercube, which means that communication distances will increase.

Contention-free implementation of the dynamic block-Cartesian decomposition is virtually

impossible on these machines, and the static block-Cartesian decomposition will suffer due

to increased lengths of message paths of non-overlapped communications.

References

[1]

[2]

T.H. Pulliam, D.S. Chaussee, A diagonal form of an implicit approzimate factoriza-

tion algorithm, Journal of Computational Physics, Vol. 29, p. 1037, 1975

J.S. Ryan, S.K. Weeratunga, Parallel computation of 3-D Navier-Stokes flowfields

for supersonic vehicles, AIAA Paper 93-0064, 318t Aerospace Sciences Meeting &

Exhibit, Reno, NV, January 11-14, 1993

[3] S.L. Johnsson, Y. Saad, M.H. Schultz, Alternating direction methods on multiproces-

sots, SIAM Journal of Scientific and Statistical Computing, vol. 8, No. 5, pp. 686-700,
1987

[4] P.J. Kominsky, Performance analysis of an implementation of the Beam and Warm-

ing implicit factored scheme on the NCube hypercube, Proceedings of the Third Sym-

posium on the Frontiers of Massively Parallel Computation, College Park, MD, Oc-

tober 8-10, 1990, IEEE Computer Society Press, Los Alamitos, CA

13



[5]

[6]

[7]

[8]

[9]

[10]

J. Bruno, P.R. Cappello, Implementing the Beam and Warming method on the hy-

percube, Proceedings of 3 ra Conference on Hypercube Concurrent Computers and

Applications, Pasadena, CA, Jan. 19-20, 1988

[11]

J.C. Yan, P.J. Hontalas, C.E. Fineman, Instrumentation, performance visualization

and debugging tools for multiprocessors, Proceedings of Technology 2001, vol. 2.,

pp. 377-385, San Jose, CA, December 4-6, 1991

S.H. Bokhari, Complete exchange on the iPSC-860, Technical Report 91-4, ICASE,

NASA Langley Research Center, Hampton, VA, 1991

S. Seidel, M-H. Lee, S. Fotedar, Concurrent bidirectional communication on the Intel

iPSC/860 and iPSC/2, Computer Science Technical Report CS-TR 90-06, Michigan

Technological University, Houghton, MI, 1990

N.H. Naik, V.K. Naik, M. Nicoules, ParaIlelization of a class of implicit finite differ-

ence schemes in computational fluid dynamics, International Journal of High Speed

Computing, Vol. 5, No. 1, pp. 1-50, 1993

T.F. Chan, On gray code mapping for mesh-FFTs on binary N-cubes, Technical

Report 86.17, RIACS, NASA Ames Research Center, 1986

S.J. Scherr, Implementation of an ezplicit Navier-Stokes algorithm on a distributed

memory parallel computer, AIAA Paper 93-0063, 31 't Aerospace Sciences Meeting &

Exhibit, Reno, NV, January 11-14, 1993

14



np slices

.A,. np piles
I

Mt °'S _ ....

f

Figure 1: Storage of slice variable in terms of piles of data

slices

0

1

2

3

4

5

0 1 2 3 4 5

m ............. _,m
I_ .............. "lml

m .............. -m
! .............. "m

B ............... -!
x-sweep y-sweep

Figure 2:Ezchangin9 piles of data during change of decomposition

,.10 I

J

J

Figure 3: Neighbors of a cell on processor 0

15



communication

# messages

storage

static dynamic

n 2 2n:_(np- 1)
18__ 2n 2 + nP _

n 2

6 + 6_-, z 2np

n n 2 n 2)

Bruno-Cappello

n 2

18(vffi_ - 1)Wfi

Table 1: Storage and communication for all three decompositions

Number of processors

4 8 16 32Grid 1 2 64 128

48x48×24 1.00 0.53 0.50 0.28 0.20 0.15 .091 .066 ¢

2.94 3.12 5.75 6.55 9.22 14.8 17.2 24.7 Mflops

96x96x48 0.24 0.25 0.17 0.13 ¢

11.4 23.4 31.3 49.0 Mflops
192x192x96 0.22 0.19

41.5 71.8
¢

Mflops

Table 2: Parallel performance of static block-Cartesian decomposition

Number of processors

4 8 16 32Grid 1 2 64 128

48x48x24 1.00 0.83 0.72 0.58 0.44 0.27 ¢

2.94 4.87 8.43 13.7 20.8 25.2 Mflops

96x96x48 0.69 0.60 0.49 0.29 ¢

16.3 28.1 46.0 55.3 Mflops
192x192x96 0.47 0.28

89.0 104.
¢

Mflops

Table 3: Parallel performance of dynamic block-Cartesian decomposition

16



Numberof processors
1 4 16 64Grid

48x48x24 1.00 0.94 0.60 0.23 ¢
2.94 11.0 28.0 42.9 Mflops

96x96x48 0.85 0.54 ¢
40.2 101. Mflops

192x192x96 0.77
144.

¢
Mflops

Table 4: Parallel performance of Bruno-CappelIo decomposition

Grid

363

563

743

893

1023

113 a'

1243

1383

1493

1603

1703

Number of processors

1 4 9 16 25 36 49 64 81 100 121

1.00 0.88 0.76 0.67 0.53 0.43 0.34 0.30 0.23 0.18 0.16 ¢

5.91 20.7 40.3 63.2 77.6 92.3 99.3 112. 109. 109. 114. Mflops

0.89 0.83 0.74 0.70 0.63 0.56 0.52 0.44 0.37 0.32 ¢

21.1 44.3 70.4 103. 135. 162. 195. 209. 217. 232. Mflops

0.86 0.82 0.76 0.72 0.66 0.63 0.57 0.50 0.45 ¢

45.6 77.6 112. 153. 191. 240. 271. 294. 325. Mflops

0.83 0.80 0.76 0.72 0.68 0.64 0.59 0.55 ¢

78.2 118. 161. 208. 258. 307. 350. 390. Mflops

0.80 0.78 0.73 0.72 0.66 0.63 0.55 ¢

118. 165. 211. 273. 318. 375. 394. Mflops

0.78 0.76 0.72 0.71 0.65 0.64 ¢

166. 221. 272. 339. 382. 455. Mflops

0.67 0.75 0.71 0.69 0.66 ¢

196. 282. 339. 410. 474. Mflops

0.75 0.74 0.70 0.69 ¢

282. 354. 415. 494. Mflops

0.72 0.71 0.70 ¢

347. 421. 500. Mflops

0.74 0.71 ¢

438. 508. Mflops

0.74 ¢

526. Mflops

Table 5: Parallel performance of Bruno-Cappello decomposition for curvilinear case

17


